Links relating to the "Fibonacci Code"
All links listed here take you off these pages.

Some interesting links relating to the Fibonacci numbers

For a gold mine of information on the Fibonacci numbers, see Dr. Ron Knott's page entitled "Fibonacci Numbers and the Golden Section". The link on that page called Fibonacci bases and other ways of representing integers is particularly relevant to the derivation of the Fibonacci code.

A page by Robert M. Dickau, called "Fibonacci Numbers" notes, with pictures, that the Fibonacci sequence gives the number of ways of tiling a 2 by N board with 1-by-2 dominoes (caution: he defines the sequence as starting with F0=F1=1, instead of the more traditional F1=F2=1, which then can be extended by defining F0=0). Why? Well, you get all the tilings at level N by either adding a single vertical domino to all the tilings at level N-1, or two horizontal dominoes to all the tilings at level N-2 (go look at his pictures).

Current research on the Fibonacci numbers is reported in The Fibonacci Quarterly.

Here's an interesting discussion of basing an apparent plane dissection paradox on the Fibonacci sequence, and in particular on Cassini's Identity. It's called Fibonacci Bamboozlement.

Links relating to barcodes

Click here for the barcode technology page of the Automatic Identification Manufacturers (AIM), the global trade association for the Automatic Identification and Data Capture (AIDC) industry.

Links relating to self-clocking data storage/transmission codes

Click here for a simple discussion of Manchester encoding.


Click here to return to the starting Fibonacci Code page
Click here to return to Larry Krakauer's home page
This page was last updated May 5, 2019, to correct broken links.